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CHAPTER 1. INTRODUCTION

1.1 Background and Previous Research

Recent progress in computer power has allowed the use of CFD (computational fluid dynam-

ics) to solve various real-life engineering problems. Experiments are generally time-consuming

and relatively expensive. Thus, the use of CFD can reduce the time and cost, and complement

the results obtained from experiments. Since many engineering problems are time dependent,

time-accurate simulations are mandatory for these problems.

In the recent decade, unstructured grids have been popular due to two main reasons. First,

unstructured grids are easy to generate compared to structured grids, especially for complex

geometries. Although structured orthogonal grids offer the best accuracy, especially for viscous

flow problems, they are generally very difficult and time-consuming to generate. The grid

generation process usually cannot be automated, whereas for unstructured grid, it can be

automated more easily, reducing the time and manpower. Another advantage of unstructured

grids is the capability of local refinement. In structured grids, when the mesh density of a

region is refined, it will affect the whole computational domain, creating unnecessary grid

points and reducing the efficiency of the simulation. On the contrary, for unstructured grids,

refinement will be local to the region of interest and will not affect the whole computational

domain. Even though the memory requirements and run time for an unstructured grid are

generally more expensive compared with a structured grid with the same number of points,

the savings in grid generation time outweigh the disadvantages.

In general, the numerical algorithms used to solve the Navier-Stokes equations can be

divided into density-based and pressure-based [1, 2]. The density-based algorithms are suitable

for solving high Mach number flows; however, for low Mach number, due to the nature of
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the mathematical equations they become unstable and the convergence rate is significantly

decreased. Several methods have been attempted to extend the density-based approaches to

handle low Mach number flows, such as preconditioning [3, 4, 5], and pseudo-compressibility [6,

7]. However, they are not efficient to solve incompressible flows. Therefore, special algorithms

have been developed for solving the incompressible Navier-Stokes equations which are also

called pressure-based algorithms.

Unfortunately, the pressure-based algorithms have their own drawbacks. For compress-

ible flows, the pressure is related to density through the equation of state. However, in the

incompressible flow equations, no explicit equation for pressure is directly available. The pres-

sure has to be indirectly specified via the continuity equation. Two approaches are used to

handle this problem, namely direct approach and segregated approach. In the direct or cou-

pled approach [8, 9, 10], the whole set of discretized momentum and continuity equations are

solved simultaneously, resulting in a stronger functional relation between pressure and velocity.

The disadvantage of this approach is that it requires a large amount of computer memory to

store all the coefficients, making it not pragmatic to solve practical engineering problems [11].

Moreover, the coefficients have to be repeatedly calculated; thus the process is uneconomical.

In the segregated approach, the pressure and velocity are solved sequentially. The pressure

is determined from a given velocity field. The problem is how to improve the pressure field

so that the velocity field satisfies the continuity equation. Another option is to eliminate the

pressure from the governing equations as is done in the vorticity-stream function method. In

the vorticity-stream function approach, the pressure is removed from the momentum equation

through cross differentiation, and the velocity is replaced by the vorticity and stream function.

A drawback of this method is that the boundary conditions at the walls are difficult to specify.

Moreover, the pressure field is usually a desired output, so an extra Poisson equation needs to

be solved to obtain the pressure. The biggest limitation, however, is that the method cannot

be easily extended to 3-D.

The pressure and velocity components are generally called the primitive variables, and

the formulations to directly solve pressure and velocity are referred to as primitive variables
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formulation. The pressure-based method with primitive variables and segregated approach are

generally preferred to solve the incompressible equations. The fractional step method [12],

penalty method [13, 14, 15, 16], artificial compressibility method [6, 17, 18, 19], and pressure-

correction method are included in this category. The fractional step or projection method was

introduced by Chorin [20] and Temam [21], but was reformulated and popularized by Kim and

Moin [12]. The basic idea of this method is to eliminate the the singular matrix that arises from

the low Mach number limit and replace it with some proper submatrices by using a factorization

technique. However, the method often introduces a spurious numerical boundary layer which

leads to substantial time differencing errors. The penalty-function formulation eliminates the

pressure from the momentum equations using a “penalty” parameter and solves the modified

momentum equations for the velocity components. The artificial compressibility method adds

a pseudo-time derivative of pressure to the continuity equation, and the equations are iterated

within a given time level to obtain a divergent-free velocity field. However, this method is

only suitable for steady state problems. The most popular formulation was first proposed by

Harlow and Welch [22] for their Marker and Cell (MAC) scheme. They introduced staggered

mesh, and segregated approach for solving the primitive variables. Patankar and Spalding [23]

extended this method with the SIMPLE algorithm (Semi-Implicit Method for Pressure-Linked

Equations). In this procedure, they introduced the concept of pressure-correction. Basically,

a pressure correction is introduced to improve the guessed velocity so that it satisfies the

continuity equation better. Extensions and improvements to the SIMPLE algorithm have

been developed such as SIMPLER, SIMPLEC, SIMPLEX, etc., that are called the SIMPLE

family of algorithms. Besides the SIMPLE family, other pressure correction methods have been

developed that include PRIME [24], PISO [25], and CLEAR [26, 27]. Most of these methods

have been reviewed by Moukalled and Darwish [28].

For finite element and finite volume methods, the location of the variables and the choice

of the control volume of integration in the spatial discretization are important. In general, the

arrangement of the variables can be categorized as collocated and staggered. On a collocated

arrangement, the pressure and velocity are located at the same point, while on a staggered
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grid, they are placed at different physical locations. Thus, the control volume for velocity

and pressure may not be the same, depending on the variable arrangement. An example

would be to have the pressure at the cell center and the velocity at the cell face. Although a

collocated grid arrangement is much simpler, it gives rise to the decoupling of pressure from

velocity resulting in spurious pressure, which is also referred to as checkerboard pressure. Rhie

and Chow proposed a solution by adding artificial diffusion terms in the mass conservation

equation. This method works by adding a corrective term to the mass fluxes at the control

volume faces, which is the basis of the pressure-weighted interpolation method (PWIM). Miller

and Schmidt [29], Majumdar [30], Lambropoulos [31] also further extended the method to

improve the approximation of the cell face velocity. Another remedy to the spurious pressure

problem is to use a staggered mesh. As mentioned earlier, the concept of staggered mesh was

introduced by Harlow and Welch [22] for their Marker and Cell (MAC) scheme for structured

grids. This scheme, in addition to eliminating the problem with checkerboard pressure, has

good conservation properties without the need for artificial boundary condition.

The numerical methods discussed so far are mostly formulated for structured grids. As

unstructured grids have become more popular, efforts to extend the methods to unstructured

grids have been attempted. Among them are by Davidson [32], Lien [33] and Chen [34] which

uses SIMPLE-like method on a collocated arrangement with the Rhie and Chow interpolation.

A semi-staggered mesh has been used by Thomadakis and Leschziner [35]. They used different

control volumes for momentum and pressure correction, but for some cases, the semi-staggered

grid still results in spurious pressure oscillations. Unfortunately, the extension of staggered

mesh to unstructured grids is not as straightforward due to geometry complexity. Physical

staggering of grids have been done by several researchers [36, 37, 38, 39, 40, 41, 42, 43] for

triangular unstructured grids. Wenneker and Segal [42, 43] developed a method that can be

used for both incompressible and compressible flows on triangular grids. Later, the method was

further extended by Vidovic [44] to be superlinearly convergent in space. For staggered grids,

the velocity field needs to be reconstructed from the staggered data with sufficient accuracy.

He proposed a new linear reconstruction of staggered velocity fields with special treatment of
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divergence. To overcome the unphysical oscillations near discontinuities commonly encountered

when using high order methods, he proposed to combine an upwind-biased finite volume scheme

and flux limiting approach, formulated for unstructured staggered schemes.

Since the staggering concept is not easily extended to unstructured grids, artificial stagger-

ing has been used to prevent spurious pressure field. Artificial staggering can be done by cal-

culating pressure at fewer grid points than velocity as in unequal-order method by Baliga [45].

Although this solves the checkerboard pressure problem, the accuracy of the solution is sig-

nificantly decreased when there are regions of high pressure gradient in the flow because the

pressure is calculated at a much coarser grid. To improve this, Prakash [46, 47] developed

an equal-order method where the pressure and velocity are computed at each grid point. A

different kind of artificial staggering was used by using an artificial velocity in place of the

nodal velocity. The equal-order velocity and pressure formulation is the basis of the current

research.

1.1.1 Time Integration Methods

Time advancement methods can be divided into three categories: explicit, implicit and

semi-implicit. Most early simulation methods use the first-order accurate forward Euler method

for time advancement. However, since it is an explicit method, it has a limitation in the size

of the time step due to stability constraints. The first implicit time advancement method was

the backward Euler method. It is unconditionally stable, but it is only first-order accurate.

Higher order implicit methods were later developed such as mid-point rule and Crank-Nicolson

method [48]. The semi-implicit methods are a combination of implicit and explicit algorithms.

Included in this category is the predictor-corrector method by MacCormack [49]. Unfortu-

nately, the semi-implicit methods also have a time step size restriction.

For higher order accuracy in time, Runge-Kutta method provides an alternative. The

Runge-Kutta family of time integration methods can be divided into explicit and implicit

methods. The classical Runge-Kutta scheme was explicit and was first developed around 1900

by Runge and his successor Kutta [50, 51]. The explicit scheme has been mostly used in
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compressible flow algorithms [52, 53, 54, 55]. Watterson [56] developed a cell vertex procedure

for compressible flow with the explicit time marching Runge-Kutta method. The implicit

Runge-Kutta method was first proposed by Kuntzmann and Butcher [57]. The implicit method

does not suffer from time step size limitation; however, its derivation is difficult and it requires

extensive calculations which makes it computationally inefficient.

Despite the fact that Runge-Kutta methods are more efficient and stable compared to

higher order methods such as the multi-step and multi-point methods [58, 59], the application

of Runge-Kutta scheme for incompressible flow solvers, in particular, its usage for SIMPLE

family of algorithms has not been popular. Previous work includes the implementation of a

novel explicit four-stage Runge-Kutta scheme for a 2-D Cartesian flow solver by Purohit [60].

The Runge-Kutta time integration was used in conjunction with SIMPLER algorithm without

the use of pressure correction equation. The current work is an extension of the same concept

to triangular unstructured grids. Recently, a method has been developed, known as SIMPLE

DIRK method, in which the second-order implicit Runge-Kutta scheme has been applied to

SIMPLE algorithm for solving incompressible flows [61]. However, their work uses the pressure

correction equation for updating the velocity.

1.2 Current Work

The present work is based on the original SIMPLER algorithm developed by Patankar [23].

The equal-order method developed by Prakash and implemented by Maresca [62] for solving

steady, two-dimensional incompressible flow using triangular unstructured grid has been ex-

tended to unsteady flow. First, the general Fully-Implicit and Crank-Nicolson time integration

scheme is implemented. In addition, the explicit four-stage Runge-Kutta scheme was imple-

mented as another option of time integration method. In particular, the Runge-Kutta scheme

is used to update the velocity components from the momentum conservation equation without

a pressure correction equation.
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CHAPTER 2. THEORETICAL FORMULATION

The scope of the current work is limited to laminar, incompressible flow. The governing

equations for the flow is given in this chapter. Spatial integration and discretization will be

performed assuming steady flow for mathematical simplicity. The formulation in this chapter

follows the work of Maresca [62]. The time-accurate formulation will be discussed in Chapter 3.

2.1 Governing Equations

The governing equations for fluid motion are the Navier-Stokes equations. As the flow

is assumed to be a Newtonian incompressible flow, the mass and momentum conservation

equations are sufficient to model the flow.

2.1.1 Conservation of Mass

The mass conservation equation, or commonly referred to as the continuity equation for a

general fluid flow, in divergence form, can be written as:

∂ρ

∂t
+ ∇ ·

(

ρ~V
)

= 0 (2.1)

For an incompressible fluid, density ρ is constant, and the equation reduces to:

∇ ·
(

ρ~V
)

= 0 (2.2)

It can be expressed in the 2-D Cartesian coordinate system as:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (2.3)
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where u and v are the velocity coordinates in the x and y directions, respectively.

2.1.2 Conservation of Momentum

The momentum conservation equation is derived using the Newton’s second law applied to

a fluid passing through an infinitesimal control volume. It is written in divergence form as:

∂

∂t

(

ρ~V
)

+ ∇ ·
(

ρ~V ~V
)

= ρ~f + ∇ · Πij (2.4)

where ρ is the fluid density, ~V is the velocity vector, and ρ~f and ∇ · Πij are the body forces

and the surface forces per unit volume, respectively. The surface forces are due to the normal

stresses and shear stresses which are represented by the components of the stress tensor Πij .

For a Newtonian fluid, the shear stress on a particular fluid element is linearly proportional to

the rate of deformation. The stress tensor Πij in tensor notation is given by:

Πij = −pδij + τij (2.5)

where δij is the Kronecker delta function (δij = 1 if i = j and δij = 0 if i 6= j), and τij

represents the viscous stress tensor and is given by:

τij = µ

[(

∂ui

∂xj

+
∂uj

∂xi

)

−
2

3
δij

∂uk

∂xk

]

i, j, k = 1, 2 (2.6)

For incompressible flow, Equation 2.4 will reduce to:

∂

∂t

(

ρ~V
)

+ ∇ · ρ~V ~V = −∇p + ∇ ·
(

µ∇~V
)

+ ~S (2.7)

where ~S is the source term due to any external forces.

Expanding Equation 2.7 in 2-D Cartesian coordinates, we obtain:

∂

∂t
(ρu) +

∂

∂x
(ρuu) +

∂

∂y
(ρvu) = −

∂p

∂x
+ Su +

∂

∂x

(

µ
∂u

∂x

)

+
∂

∂y

(

µ
∂u

∂y

)

(2.8)
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∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρvv) = −

∂p

∂y
+ Sv +

∂

∂x

(

µ
∂v

∂x

)

+
∂

∂y

(

µ
∂v

∂y

)

(2.9)

where Su and Sv are the source terms in the u and v momentum equations, respectively.

Combining like terms and defining the components of total flux vector in the u-momentum

equation ( ~Ju) as:

Ju
x = ρuu − µ

∂u

∂x

Ju
y = ρvu − µ

∂u

∂y
(2.10)

we can simplify Equation 2.8 to be:

∂Ju
x

∂x
+

∂Ju
y

∂y
= −

∂p

∂x
+ Su (2.11)

Similarly for v-momentum equation, the total flux vector ( ~Jv) has the following components:

Jv
x = ρuv − µ

∂v

∂x

Jv
y = ρvv − µ

∂v

∂y
(2.12)

and Equation 2.9 becomes:

∂Jv
x

∂x
+

∂Jv
y

∂y
= −

∂p

∂y
+ Sv (2.13)

2.2 Spatial Discretization

For a finite volume method, the computational domain is subdivided into control volumes,

and the conservations laws are evaluated in integral form on each control volume. This research

uses a vertex centered method with triangular elements. First, the domain is subdivided into

triangular cells and then median dual control volumes are constructed by making a straight

line from the center of the triangles to the midpoint of its faces. This results in non-overlapping

control volumes for the vertices where Eulerian field variables are stored. The node-centered
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procedure developed by Prakash [46] and Baliga [63] is used in this work. A typical control

volume for vertex P is depicted in Figure 2.1, whose neighboring points are A, B, C, D, E, F

and G. The control volume is the shaded region and the dashed lines represent its boundary.

P A

B

C

D

F G

E

Figure 2.1 Median dual control volume for point P .

2.3 Variable Interpolation Function and Flux Calculation

For the flux calculation at the control volume faces, a profile assumption concerning the

variables inside the triangular elements is required. In this research, the following assumptions

are made:

• The density (ρ) and viscosity (µ) are constant for a triangular element. This ensures the

continuity of flux of any general variable φ at the control volume surface.

• The momentum source terms for the u-momentum equation (Su) and the v-momentum

equation (Sv) are constant over a triangle.
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• The velocity (~V ) varies linearly within a triangle. This assumption will become particu-

larly important when developing the shape function for the general variable φ.

• The pressure varies linearly in the x and y-directions. This means that the pressure

gradients are constant within a triangular element.

For flux calculation, interpolations of the general variable φ or its gradient are required

within a triangular element to obtain the values at the control volume faces. The choice of the

interpolation function has a significant influence on the accuracy of the method. In addition,

it must be able to correctly model the physics of the flow with reasonable computational

effort and time. For a 1-D convection-diffusion problem without any source terms, the exact

solution is an exponential function. However, since computation of an exponential function is

rather expensive, the power law scheme is often used as an approximation to the exponential

function [23].

For structured grids where the control volume faces are aligned with the direction of the

coordinate system, the implementation of the scheme is straightforward. The drawback is

that the numerical accuracy is greatly reduced for higher Reynolds number flows for the case

when the velocity vector is not in the direction of the coordinate system. The difficulty with

unstructured grids is that the control volume faces may be oriented in random directions, in

general not aligned with the velocity. To handle this, Baliga proposed to use a local coordinate

system for each triangular element, where one of the coordinate direction is aligned with the

average velocity vector inside the triangle.

A schematic of a triangular element is depicted in Figure 2.2 with its vertices denoted as

1, 2 and 3. The global coordinate system is defined by x and y axes. The velocity vector

is denoted by ~V . The velocity components in these two directions are u and v, respectively.

A local coordinate system of X and Y axes is defined such that its origin is located at the

triangle’s centroid and its X axis coordinate orientation is along the direction of the average

velocity vector, ~Uavg .
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Uavg

2

3

1

y

x

X

Y

θ

Figure 2.2 Global and local coordinate system for a triangular element.

The average velocity vector at the centroid is given by:

Uavg =
√

u2
avg + v2

avg (2.14)

where:

uavg =
1

3
(u1 + u2 + u3) (2.15)

vavg =
1

3
(v1 + v2 + v3) (2.16)

The angle between the average velocity vector and the global coordinate system x axis can

be obtained by:

θ = cos−1

(

uavg

Uavg

)

(2.17)
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2.3.1 Interpolation Function for General Variable φ

Baliga [63] developed an interpolation function for the triangle unstructured mesh which

incorporated the exact solution to the 1-D convection-diffusion problem but accounted for the

two-dimensionality of the flow. This shape function is exponential in the X-direction and

linear in the Y -direction. For a general variable φ, the shape function becomes:

φ = AZ + BY + C (2.18)

where A, B and C are constants to be determined from the values of φ at vertices of the

triangle, Z is an exponential function in the local X direction and is defined as:

Z =
µ

ρUavg

[

exp

(

Pe∆ (X − Xmax)

Xmax − Xmin

)

− 1

]

(2.19)

The exponential function is computationally expensive, and a “power-law” scheme for

unstructured triangular mesh has been developed by Baliga [63] similar to the “power-law”

scheme discussed by Patankar for structured grids [23]. The Z function defined in the power

law scheme is:

Z =
X − Xmax

Pe + [[0, (1 − 0.1 |Pe|)5]]
(2.20)

In the above equations, Pe is the element Peclet number, which can be calculated as:

Pe∆ =
ρUavg∆X

µ
(2.21)

The characteristic length, ∆X, is:

∆X = Xmax − Xmin (2.22)

where:

Xmax = max(X1,X2,X3) (2.23)
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Xmin = min(X1,X2,X3) (2.24)

The constants A, B, and C of Equation 2.18 are calculated from the boundary requirements

of φ = φ1, φ = φ2, and φ = φ3 at their respective vertices. Details of the derivation can be

found in Appendix A. The constants are a function of the variable at the vertices of the

triangle:

A = Liφi (2.25)

B = Miφi (2.26)

C = Niφi (2.27)

where aibi =
3
∑

i=1

aibi as used in tensor notation, and the index i corresponds to indices 1, 2,

and 3. The final form of the interpolation function is then given as:

φ = (LiZ + MiY + Ni)φi (2.28)

2.3.2 Momentum Flux Computation

The flux vector ~J can be written in the local coordinate system as:

~J = JX êX + JY êY (2.29)

where êX and êY are the unit vector in the local coordinate system, and the components are

as follows:

JX = ρUφ − µ
∂φ

∂X
(2.30)

JY = ρV φ − µ
∂φ

∂Y
(2.31)

Now that we have the spatial profile of the general variable φ (Equation 2.28), we can

find its derivatives, and substitute them in Equations 2.30 and 2.31. After substituting and
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rearranging the variables, we obtain:

JX = (ρfi − µLi)φi (2.32)

JY = (ρgi − µMi)φi (2.33)

where:

fi = (U − Uavg)LiZ + U (MiY + Ni) (2.34)

gi = V (LiZ + MiY + Ni) (2.35)

2.3.3 Interpolation Function for Pressure

Pressure is assumed to vary linearly within a triangular element in x and y-direction of the

global coordinate system. The equation for pressure can be written as:

p = − (αx + βy + γ) (2.36)

where the coefficients are determined by forcing p = p1, p = p2, and p = p3 at their respective

grid points (Figure 2.3). If the pressure field within a triangle is a linear function, the derivatives

will be constants. Thus, the derivatives with respect to x and y are given as:

−
∂p

∂x
= α

= L̄1p1 + L̄2p2 + L̄3p3 (2.37)

−
∂p

∂y
= β

= M̄1p1 + M̄2p2 + M̄3p3 (2.38)

where the coefficients L̄′s and M̄ ′s are derived in Appendix A.
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p3( )

p2)(p1)(

dp
dy

dp
dx , is constant

2

3

1

Figure 2.3 Pressure variation within an element.

2.4 Integration and Discretization of the Momentum Equations

The u and v momentum equations (derived earlier in Equations 2.11 and 2.13) are:

∂Ju
x

∂x
+

∂Ju
y

∂y
= −

∂p

∂x
+ Su (2.39)

∂Jv
x

∂x
+

∂Jv
y

∂y
= −

∂p

∂y
+ Sv (2.40)

For the u momentum equation, the left hand side (LHS) of the equation can be written as:

∂Ju
x

∂x
+

∂Ju
y

∂y
= ∇ · ~Ju (2.41)

We can rewrite the LHS in the local coordinate system as:

∇ · ~Ju =
∂Ju

X

∂X
+

∂Ju
Y

∂Y
(2.42)
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where the divergence operation in the local coordinate system is given in Appendix B.

Now the momentum conservation equations becomes:

∫ ∫
(

∂Ju
X

∂X
+

∂Ju
Y

∂Y

)

dA =

∫ ∫
(

Su −
∂p

∂x

)

dA (2.43)

∫ ∫
(

∂Jv
X

∂X
+

∂Jv
Y

∂Y

)

dA =

∫ ∫
(

Sv −
∂p

∂y

)

dA (2.44)

Note that the LHS of the equations are expressed in the local coordinate system, aligned with

the local flow which reduces false diffusion. However, the terms on the right hand side (RHS)

of the equation which are the pressure gradient and source term, are in the global coordinate

system.

The Gauss’ theorem for a vector ~B is defined as:

∫

CV

∇ · ~B dV =

∮

CS

~B · ~dA =

∮

CS

~B · n̂dA (2.45)

where n̂ is the normal vector pointing out of the enclosed area dA.

Using Gauss’ theorem the equation can be transformed from surface integral to a closed line

integral:
∮

(

~Ju · n̂
)

dl =

∫ ∫
(

Su −
∂p

∂x

)

dA (2.46)

where the n̂ is normal to the control volume face r−s−t pointing away from point 1 (Figure 2.4),

and is computed by:

n̂ =

(

Yt − Yr

dl

)

êX −

(

Xt − Xr

dl

)

êY (2.47)

2.4.1 Integration of the LHS

The left hand side (LHS) of Equation 2.46 requires the integration of the flux terms across

the face r − s − t with length dl:

LHS =

∮

(

~Ju · n̂
)

dl (2.48)
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If the vectors in LHS of the equation are composed in the local coordinate system, we can

write the flux vector as:

~Ju = Ju
X êX + Ju

Y êY (2.49)

2

3

1

rs
t

n

dl

Figure 2.4 Flux integration.

Using Simpson’s quadrature rule, the integral of Equation 2.48 is calculated based on informa-

tion from three locations – r, s, and t:

LHS =
dl

6

([

~Ju · n̂
]

r
+ 4

[

~Ju · n̂
]

s
+
[

~Ju · n̂
]

t

)

(2.50)

Expanding the above equation results in an expression for the fluxes at the three points:

LHS =
dl

6

(

[Ju
Xr + 4Ju

Xs + Ju
Xt]

(

Yt − Yr

dl

)

− [Ju
Y r + 4Ju

Y s + Ju
Y t]

(

Xt − Xr

dl

))

(2.51)

However, the fluxes at the interface are functions of values at grid points 1, 2, and 3. Taking
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guidance from Equations 2.30 and 2.31 and rearranging Equation 2.51, the flux of u across the

interface is obtained as:

LHS = a1u1 + a2u2 + a3u3 = aiui (2.52)

For the grid point P , it follows naturally that the total flux leaving the control volume

surrounding the node can be calculated collectively by visiting each edge and applying the

same procedure discussed above. Looking at Figure 2.5, edge by edge, one is able to collectively

compute the flux across the control volume for faces on both the left and right sides of the

edge. For node P , the LHS of the equation is:

LHS = au
P uP −

∑

au
nbunb (2.53)

where nb represents the terms from the neighboring points (2’s and 3’s) of P and the aP is

composed of the sum of the a1 coefficients from all the triangles surrounding point P such as

shown in Figure 2.5.

2.4.2 Integration of the RHS

The right hand side (RHS) of the u-momentum equation (Equation 2.43) is:

RHS =

∫ ∫
(

Su −
∂p

∂x

)

dA (2.54)

As previously stated, the source term Su and pressure gradients are assumed to be constant

for any particular triangle or element (Figure 2.6). Substituting pressure gradient from Equa-

tion 2.38 and assuming Su is constant, integration of Equation 2.54 yields:

RHS = A
(

Su + L̄1p1 + L̄2p2 + L̄3p3
)

(2.55)

where A is the area of the control volume shown in Figure 2.6.



www.manaraa.com

20

P1

1

1

1
1

2

2

2

2

2
3

3

3

3

3

st rrst

Figure 2.5 Total flux integration for grid point P .

2.4.3 The Total Discretized Equation

Combining Equations 2.53 and 2.55, the total discretized U–momentum equation for node

P is obtained in the form of:

au
P uP =

∑

au
nbunb +

M
∑

m=1

(

A
[

Su + L̄1p1 + L̄2p2 + L̄3p3
])

m
(2.56)

where M is the total number of triangles surrounding grid point P . Likewise, the V –momentum

equation can be written as follows:

av
P vP =

∑

av
nbvnb +

M
∑

m=1

(

A
[

Sv + M̄1p1 + M̄2p2 + M̄3p3
])

m
(2.57)
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1

2

3

S is constant

Figure 2.6 Integration of the source and pressure terms.

2.4.4 Boundary Condition

For boundary points such as shown in Figure 2.7, the discretized equations are slightly

modified to take into account the known quantity from the boundary edge. Two boundary

conditions are possible:

• given φ (u or v),

• given flux Fφ

To handle these boundary conditions, the discretization equation for the boundary point

becomes:

au
P φP =

∑

anbφnb +
M
∑

m=1

(

AP Sφ
total

)

m
− Fφ

P + ṁP φP (2.58)

where Fφ
P is the total flux of φ, ṁP is the total mass flux leaving the domain through section

i−P − a (Figure 2.7), and M is the total number of triangles surrounding point P . When the

value of φ is known at point P (given φP ), then Equation 2.58 is used to determine Fφ
P :

Fφ
P =

∑

anbφnb − au
P φP +

M
∑

m=1

(

AP Sφ
total

)

m
+ ṁP φP (2.59)
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If the flux of φ is given (known Fφ
P ), then φP is obtained by solving Equation 2.58 and treating

it as a regular point.

C

D

AE

B

a

b

i

c

d
ef

g

h

P

Figure 2.7 Boundary point P .

2.5 Equal-Order Velocity-Pressure Interpolation Method

The equal-order method developed by Prakash and Patankar [47] is implemented. The

difficulties of an equal order method for incompressible flow is that there is no explicit equation

of pressure, and only gradients of pressure appear in the momentum equation. The pressure

is obtained indirectly from the continuity equation. When the pressure and velocity have the

same interpolation function, spurious pressure distribution may occur. The basic idea behind

the equal-order method is that the velocity field used to solve the pressure from the continuity

equation should be dependent on the pressure difference between adjacent grid points. Thus,

the solution of continuity equation does not allow a checkerboard pressure field.

2.5.1 Definition of pseudo-velocity (û, v̂) and source term coefficient (du, dv)

The pseudo velocities, û and v̂, and the coefficients, du and dv, are central to the definition

of the artificial velocity field. From Equations 2.56 and 2.57, the u and v velocity can be solved
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from:

uP =

∑

au
nbunb

au
P

+
AP

au
P

(Su + L1p1 + L2p2 + L3p3) (2.60)

vP =

∑

av
nbvnb

av
P

+
AP

av
P

(Sv + M1p1 + M2p2 + M3p3) (2.61)

If the pseudo velocities are defined by:

ûP =

∑

au
nbunb

au
P

(2.62)

v̂P =

∑

av
nbvnb

av
P

(2.63)

where, nb is a summation of grid points immediately surrounding grid point P . We can define

the coefficients of the source term, du and dv , for a node P as:

du
P =

AP

au
P

(2.64)

dv
P =

AP

av
P

(2.65)

where AP is the area of the control volume surrounding grid point P . It is assumed that û, v̂,

du, and dv vary linearly within the triangular element.

2.5.2 Definition of Artificial Velocity ~̃u

The artificial velocity field used in the equal-order method is denoted as ~̃u. It is derived

from the solution of the discretized momentum equations and is defined element by element.

For a typical element shown in Figure 2.8, ~̃u is defined as:

~̃u = ũî + ṽĵ (2.66)



www.manaraa.com

24

where the components of the velocity is defined as:

ũ = û + du

[

Su −
∂p

∂x

]

e

(2.67)

ṽ = v̂ + dv

[

Sv −
∂p

∂y

]

e

(2.68)

and the pseudo-velocities (û, v̂) and the source term coefficients (du, dv) are given in Equa-

tions 2.62 through 2.65. The subscript e indicates that the pressure gradient and source term

are taken only from the given element. This is different from the discretized momentum equa-

tion (Equations 2.60 and 2.61) where the pressure gradient and source term are composed of

the contributions from all the surrounding cells.

v1u1
),(

d1
u

d1
v( , )

),(

( , )d2
u

d2

v2u2
v

),(

( , )

u3 v3

d3
u

d3
v

r

t

1

2

3

s

Figure 2.8 Artificial velocity field on a triangular element.

Unlike the nodal velocity which do not sense any difference between a uniform and a

checkerboard pressure field, the artificial velocity field is dependent on and is driven by the

pressure difference between adjacent grid points. Therefore, a checkerboard pressure field is not
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an acceptable solution to the continuity equation. Using the above definitions, the ~̃u field can

be expressed at the control volume faces in a straightforward manner, by linearly interpolating

from grid points at the vertices of the triangles. The derivation of the artificial velocity for the

control volume faces will be given later in this chapter.

2.5.3 Equal-Order Formulation for Solving the Governing Equations

The discretization of the governing equation has been completed in the previous sections.

In the equal-order method, the continuity equation was applied to the artificial velocity ~̃u field

and not the nodal velocity field. Since the mass conservation equation is solved using the

artificial velocity field to obtain pressure, the coefficients of the momentum equations must be

calculated using a mass conserving velocity field for the method to be conservative. Therefore,

the artificial velocity ~̃u field should be used in place of the nodal velocities when calculating the

coefficient ai in Equation 2.52. When finding the shape function and local coordinate system

orientation, the artificial velocity should be used as follows:

Ũavg =
√

ũ2
avg + ṽ2

avg (2.69)

where:

ũavg =
1

3
(ũ1 + ũ2 + ũ3) (2.70)

ṽavg =
1

3
(ṽ1 + ṽ2 + ṽ3) (2.71)

Similarly, ~̃u should be used to compute the flux at the control volume faces in Equation 2.35:

fi =
(

Ũ − Ũavg

)

LiZ + Ũ (MiY + Ni) (2.72)

gi = Ṽ (LiZ + MiY + Ni) (2.73)

where Ũ and Ṽ are components of the ~̃u field in the local coordinate system.
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2.5.4 Interpolation of the Artificial Velocity ~̃u at Control Volume Faces

In Figure 2.8, the velocity component ũ is defined at the triangle vertices 1, 2, and 3 as:

ũ1 = û1 + du
1

[

Su +
(

L̄1p1 + L̄2p2 + L̄3p3
)]

e
(2.74)

ũ2 = û2 + du
2

[

Su +
(

L̄1p1 + L̄2p2 + L̄3p3
)]

e
(2.75)

ũ3 = û3 + du
3

[

Su +
(

L̄1p1 + L̄2p2 + L̄3p3

)]

e
(2.76)

Similarly for the component ṽ, it is defined as:

ṽ1 = v̂1 + dv
1

[

Sv +
(

M̄1p1 + M̄2p2 + M̄3p3

)]

e
(2.77)

ṽ2 = v̂2 + dv
2

[

Sv +
(

M̄1p1 + M̄2p2 + M̄3p3
)]

e
(2.78)

ṽ3 = v̂3 + dv
3

[

Sv +
(

M̄1p1 + M̄2p2 + M̄3p3
)]

e
(2.79)

As stated earlier, assumption has been made that the pseudo velocities (û and v̂) and the

coefficients of the source term (du and dv) have a linear profile within a triangular element,

while the source terms Su, Sv, and the pressure gradient are constants for each element or

triangle. This means that the artificial velocity also varies linearly inside a triangle. In other

words, the artificial velocity components, ũ and ṽ, can be computed at the control volume face

r − s − t by linearly interpolating û, v̂, du, and dv, while holding the pressure gradient and

source terms constant.

Artificial Velocity at Point r

Referring to Figure 2.8, we can obtain the artificial velocity component in X-direction at the

centroid r from:

ũr = ûr + du
r

[

Su + L̄1p1 + L̄2p2 + L̄3p3
]

(2.80)

where the pseudo-velocity and source term coefficient are obtained by:

ûr =
1

3
(û1 + û2 + û3) (2.81)
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du
r =

1

3
(du

1 + du
2 + du

3) (2.82)

Similarly,

ṽr = v̂r + dv
r

[

Sv + M̄1p1 + M̄2p2 + M̄3p3
]

(2.83)

where:

v̂r =
1

3
(v̂1 + v̂2 + v̂3) (2.84)

dv
r =

1

3
(dv

1 + dv
2 + dv

3) (2.85)

Artificial Velocity at Point t

Since the mid point of the triangle element edge (point t) is located halfway between point 1

and 3, the pseudo velocity and source term coefficient can be obtained by averaging the values

at grid points 1 and 3:

ût =
1

2
(û1 + û3) (2.86)

du
t =

1

2
(du

1 + du
3) (2.87)

v̂t =
1

2
(v̂1 + v̂3) (2.88)

dv
t =

1

2
(dv

1 + dv
3) (2.89)

The artificial velocity at the point t can be simplified to:

ũt = ût + du
t

[

Su + L̄1p1 + L̄2p2 + L̄3p3
]

(2.90)

ṽt = v̂t + dv
t

[

Sv + M̄1p1 + M̄2p2 + M̄3p3
]

(2.91)

Artificial Velocity at Point s

The velocity at point s is computed by linearly interpolating between points r and t. Since

point s is halfway between the two points, Equations 2.80 and 2.90 can be averaged to obtain
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ũs:

ũs =
1

12
(5û1 + 2û2 + 5û3) +

1

12
(5du

1 + 2du
2 + 5du

3)
[

Su + L̄1p1 + L̄2p2 + L̄3p3

]

(2.92)

Similarly for ṽs, Equations 2.83 and 2.91 can be averaged to yield:

ṽs =
1

12
(5v̂1 + 2v̂2 + 5v̂3) +

1

12
(5dv

1 + 2dv
2 + 5dv

3)
[

Sv + M̄1p1 + M̄2p2 + M̄3p3

]

(2.93)

We can cast the formula in terms of pseudo velocity and source term coefficients:

ũs = ûs + du
s

[

Su + L̄1p1 + L̄2p2 + L̄3p3

]

(2.94)

ṽs = v̂s + dv
s

[

Sv + M̄1p1 + M̄2p2 + M̄3p3
]

(2.95)

where the pseudo velocity components and source term coefficients are:

ûs =
1

12
(5û1 + 2û2 + 5û3) (2.96)

du
s =

1

12
(5du

1 + 2du
2 + 5du

3 ) (2.97)

v̂s =
1

12
(5v̂1 + 2v̂2 + 5v̂3) (2.98)

dv
s =

1

12
(5dv

1 + 2dv
2 + 5dv

3) (2.99)

Since the artificial velocity ~̃u field is used when solving the continuity equation to obtain

the pressure, it can be considered as the mass conserving velocity field. In order to attain a

conservative formulation, the coefficients of the momentum equations need to be generated us-

ing a conservative velocity field. Thus, the coefficients of the discretized momentum coefficients

in Equations 2.56 and 2.57 are calculated using these values instead of the nodal velocity.
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2.6 Pressure Equation

The key idea behind the equal-order method is to use the artificial velocity ~̃u field to

compute the pressure from the discretized mass conservation equation:

∮

ρ~̃u · n̂dl = 0 (2.100)

By applying a simple, one point integration to the mass conservation equation for the control

volume face r − s − t in Figure 2.8, we obtain:

∫ t

r
ρ~̃u · n̂dl = ρ [ũs (yt − yr) − ṽs (xt − xr)] (2.101)

Substituting the velocity components ũs and ṽs from Equations 2.94 and 2.95 results in:

ρ [ũs (yt − yr) − ṽs (xt − xr)] =

ρ
[

ûs + du
s

(

Su + L̄1p1 + L̄2p2 + L̄3p3
)]

(yt − yr) −

ρ
[

v̂s + dv
s

(

Sv + M̄1p1 + M̄2p2 + M̄3p3

)]

(xt − xr) (2.102)

Collecting the terms which contain pressure and separating the other terms, we can rewrite

the equation as:

ρ [ũs (yt − yr) − ṽs (xt − xr)] = ap
i pi + rp (2.103)

where

ap
i = ρ

[

(yt − yr) du
s L̄i − (xt − xr) dv

sM̄i

]

(2.104)

and

rp = ρ [(yt − yr) (ûs + du
sSu) − (xt − xr) (v̂s + dv

sS
v)] (2.105)

Note that i represents the vertices 1, 2 and 3 of the triangle in which the face r − s − t is

located. If the above process is applied to every face of the control volume boundary, the total
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discretized equation for pressure becomes:

ap
P pP =

∑

ap
nb pnb + bp (2.106)

where the subscript nb denotes all the neighbor grid points surrounding control volume for

point p, and the pressure source term is:

bp =
∑

rp (2.107)

2.6.1 Boundary Condition for Pressure Equation

For a boundary point P , as in Figure 2.7, the discretized pressure equation needs to be

modified to include the mass flow leaving the boundary face. This is done by subtracting the

mass flux from the right hand side of the Equation 2.106. The discretization equation for

pressure for a boundary point can be written as:

ap
P pP =

∑

ap
nbpnb + bp − ṁP (2.108)

where ṁP is the mass flow leaving the control volume through the boundary face i − P − a

(Figure 2.7).

2.7 Pressure Correction Equation

The momentum and pressure equations discretized so far are adequate to solve for the

velocity components and pressure. However, the convergence can be accelerated by deriving

a pressure correction equation which will correct the velocities so that they satisfy the mass

conservation equation at the end of each iteration. Especially in the equal-order method,

since the mass conservation equation is solved using the artificial velocity, the solution of the

mass conservation does not directly affect the values of the nodal velocity. Therefore, the

convergence of this algorithm is found to be rather slow. To accelerate convergence, Patankar

popularized the use of pressure correction equation in SIMPLE and SIMPLER algorithm. A



www.manaraa.com

31

similar concept is adopted here for the equal-order method.

Suppose that the pressure field p∗ is used to calculate the velocity components u∗ and v∗.

Using u∗ and v∗ to get û∗ and v̂∗, the artificial velocity field ~̃u is given as:

ũ∗ = û∗ + du

[

Su −
∂p∗

∂x

]

(2.109)

ṽ∗ = v̂∗ + dv

[

Sv −
∂p∗

∂y

]

(2.110)

The star subscript indicates that the velocity field is a guessed values obtained from solving

the momentum equations which does not satisfy the mass conservation (continuity) equation.

Suppose we have a correction to pressure (p′):

p = p∗ + p′ (2.111)

With this pressure, the artificial velocity will satisfy the mass conservation:

ũ = û∗ + du

[

Su −
∂

∂x

(

p∗ + p′
)

]

(2.112)

ṽ = v̂∗ + dv

[

Sv −
∂

∂y

(

p∗ + p′
)

]

(2.113)

We can write the new velocity as the guessed velocity plus a correction term:

ũ = ũ∗ + ũ′ (2.114)

ṽ = ṽ∗ + ṽ′ (2.115)

where the velocity correction ũ′ and ṽ′ are given by:

ũ′ = −du

(

∂p′

∂x

)

(2.116)

ṽ′ = −dv

(

∂p′

∂y

)

(2.117)

If we compare these equations with the ones used in the pressure equation, the difference
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is only in the source terms. The source terms used in the pressure solution are replaced with:

Su
p′ = Su −

∂p∗

∂x
(2.118)

Sv
p′ = Sv −

∂p∗

∂y
(2.119)

and û and v̂ are replaced with û∗ and v̂∗ for the p′ computation. Therefore, the system of

equations for the pressure correction procedure is:

ap
P p′ =

∑

ap
nb p′nb + bpp (2.120)

For a boundary node where the mass flux is known, the equation becomes:

ap
P p′ =

∑

ap
nb p′nb + bpp − ṁP (2.121)

where ap
P and ap

nb are the same coefficients from the pressure p∗ equation. Once p′ is obtained,

the velocity correction terms ũ′ and ṽ′ is calculated using Equations 2.116 and 2.117. Then,

the nodal velocities are corrected using the p′ field obtained. Prakash [46] developed the nodal

velocity correction formulas based on the ũ′ and ṽ′ equations. They are as follows:

u′

P = −
du

P

3AP

k
∑

i=1

Ai

(

∂p′

∂x

)

i

(2.122)

v′P = −
dv

P

3AP

k
∑

i=1

Ai

(

∂p′

∂y

)

i

(2.123)

where du
P and dv

P are the coefficients du and dv at grid point P , and the summation is made

over the triangles which contribute to the control volume around P . Finally, u∗

P and v∗P are

corrected using Equations 2.122-2.123:

uP = u∗

P + u′

P (2.124)
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vP = v∗P + v′P (2.125)

Note that the boundary velocities are not corrected because it will change the specified bound-

ary condition for the given problem.
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CHAPTER 3. NUMERICAL PROCEDURES FOR UNSTEADY

SIMULATION

The steady SIMPLER algorithm [23] is the starting point of the algorithms to be developed

here for unsteady flows. Three different time integration schemes are explored in this research,

namely (a) Fully-Implicit; (b) Crank-Nicolson; and (c) Runge-Kutta. Of these schemes, the

first two follow the traditional SIMPLER algorithm for the pressure-velocity coupling wherein

a pressure-correction equation is used to correct the velocity components. The current re-

search uses a different method for computing the velocity components. The explicit algorithm

developed in this thesis for unstructured meshes, identified henceforth as “RK-SIMPLER”,

follows the traditional SIMPLER algorithm for updating the pressure by solving the mass con-

servation equation, but uses the Runge-Kutta four-stage algorithm for updating the velocity

components. Since no approximation is assumed in the momentum equation, the pressure

correction used to correct the velocity components is no longer necessary. The Fully Implicit

and the Crank-Nicolson schemes also require each time step to be subdivided and the veloci-

ties to be corrected at every sub-iteration, while in Runge-Kutta the velocity is updated only

once while advancing to the next time level. The details of the current modified SIMPLER

algorithm is described in this section.

3.1 Time Integration Method

3.1.1 Fully Implicit and Crank Nicolson Schemes

If φ is the variable to be integrated, an assumption is necessary about how it will vary with

time from t to t + ∆t. Many assumptions are possible; some of them may be generalized by
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proposing the following stencil:

∫ t+∆t

t
φ dt = [αφ + (1 − α)φ0] ∆t (3.1)

where α is the weighting factor. In particular, α = 0.5 leads to the Crank-Nicolson scheme

and α = 1 to the Fully Implicit scheme.

3.1.2 General Convection-Diffusion Equation

The two-dimensional form of the General Convection-Diffusion equation can be written as:

∂(ρφ)

∂t
+

∂Jx

∂x
+

∂Jy

∂y
= S (3.2)

The term S represents the source term while Jx and Jy are the total (convection plus diffusion)

fluxes defined by:

Jx ≡ ρuφ − Γ
∂φ

∂x
(3.3)

Jy ≡ ρvφ − Γ
∂φ

∂y
(3.4)

The terms u and v denote the velocity components in the x and y directions.

Integration of this equation over the control volume and time can be written as:

∫ ∫ ∫

t

∂(ρφ)

∂t
dt dA +

∫

t

∫ ∫
(

∂Jx

∂x
+

∂Jy

∂y

)

dA dt =

∫

t

∫ ∫

S dA dt (3.5)

The first term can be expanded to:

∫ ∫ ∫

t

∂(ρφ)

∂t
dt dA = [(ρφ) − (ρφ)0] ∆A (3.6)

The second term is:

∫

t

∫ ∫
(

∂Jx

∂x
+

∂Jy

∂y

)

dA dt =

∫

t

∫ ∫

(

∇ · ~J
)

dA dt (3.7)
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Using Gauss-Divergence theorem:

∫

t

∫ ∫
(

∂Jx

∂x
+

∂Jy

∂y

)

dA dt =

∫

t

∮

(

~J · n̂
)

dl dt (3.8)

=
[

αJ int
n + (1 − α)J int

n

0
]

∆t

(3.9)

where J int
n is the integrated flux in Equation 2.52. Then, the second term can be computed

as:
∫

t

∫ ∫
(

∂Jx

∂x
+

∂Jy

∂y

)

dA dt =
[

αΣaiφi + (1 − α) (Σaiφi)
0
]

∆t (3.10)

The last term is:

∫

t

∫ ∫

S dA dt =
[

α(SC − SP φP ) + (1 − α)(S0
C − S0

P φ0
P )
]

∆A ∆t (3.11)

The source term S has been linearized as S = SC −SP φP , where SC denotes the constant part

of the linearized source term and SP the variable part.

The discretized form of this equation is obtained upon integration over the control volume

and is given by the following equation.

[(ρφ)P − (ρφ)0P ]
∆A

∆t
+ αΣaiφi + (1 − α) (Σaiφi)

0 =

[

α(SC − SP φP ) + (1 − α)(S0
C − S0

P φ0
P )
]

∆A (3.12)

For the unsteady term, ρ and φ are assumed to prevail over the entire control volume. The

‘old’ values (i.e., the values at the beginning of the time step) are denoted by ρ0 and φ0.

This equation can be represented in the following simplified form:

ρ ∆A

∆t
φP + α aP φP + α SP φP = α(Σanb φnb) + αSC∆A + (3.13)

(1 − α)(Σanbφnb)
0 − (1 − α)(aP φP )0 +

(1 − α)(S0
C − S0

P φ0)∆A +
ρ ∆A

∆t
φ0

P
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After rearrangement, the equation can be written as:

aP φP = α(Σanb φnb) + btotal (3.14)

where

aP =
ρ ∆A

∆t
+ α aP + α SP ∆A (3.15)

btotal = b + bo (3.16)

b = αSC∆A (3.17)

bo = (1 − α)[(Σanbφnb)
0]

−(1 − α)[aP − S0
P ∆A]φ0

P

+
ρ∆A

∆t
φ0

P + (1 − α)S0
C∆A (3.18)

All the terms with superscript 0 refer to values computed at the previous time step.

3.1.3 Time-Accurate Pseudo and Artificial Velocity

As discussed in Chapter 2, the artificial velocity components are defined as:

ũ = û + du(Su −
∂p

∂x
) (3.19)

ṽ = v̂ + dv(Sv −
∂p

∂y
) (3.20)

From Equation 3.14, we can write the unsteady u-momentum equation as:

au
P uP = α(Σau

nb unb) + bu
total (3.21)

If the pressure source is treated implicitly, the source term consisting of the unsteady source

terms bu and bu
o becomes:

bu = [αSu
C + (L1p1 + L2p2 + L3p3)] ∆A (3.22)
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bu
o = (1 − α)[(Σau

nbunb)
0]

−(1 − α)[au
P − (Su

P )0 AP ]u0
P

+
ρAP

∆t
u0

P + (1 − α) (Su
C)0 AP

The term bu has the pressure term, so we can rewrite the equation as:

au
P uP = α(Σau

nb unb) + bu
o + [αSu

C + (L1p1 + L2p2 + L3p3)] AP (3.23)

uP =
α(Σau

nb unb) + bu
o

au
P

+
AP

au
P

[αSu
C + (L1p1 + L2p2 + L3p3)] (3.24)

Similar to Equations 2.62, now we can define the pseudo velocities as:

û =
α(Σau

nb unb) + bu
o

au
P

(3.25)

and the source term coefficient as:

du =
AP

au
P

(3.26)

Even though Equation 3.26 looks similar to Equation 2.64, it is important to note that the

grid point coefficient contains the unsteady terms as given in Equation 3.15:

On applying the same procedure to the v-momentum equation, we get:

v̂ =
α(Σav

nb vnb) + bv
o

av
P

(3.27)

dv =
AP

av
P

(3.28)

where

av
P =

ρ AP

∆t
+ α av

P + α Sv
P AP (3.29)

The same assumptions about the variation of pseudo and artificial velocity are made. Thus,

the interpolation of the artificial field ~̃u can follow the discussion of Section 2.5.4.
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3.1.4 Pressure Equation

Starting from the integrated continuity equation for the control volume face r − s − t

(Figure 2.8), we have:

∫ t

r
ρ~̃u · n̂dl = ρ [ũs (yt − yr) − ṽs (xt − xr)] (3.30)

Similar to Section 2.6, total integration of the continuity equation over the control volume

faces yields:

ap
P pP =

∑

ap
nb pnb + bp (3.31)

where:

ap
i = ρ

[

(yt − yr) du
s L̄i − (xt − xr) dv

sM̄i

]

(3.32)

bp = ρ [(yt − yr) (ûs + du
sSu) − (xt − xr) (v̂s + dv

sS
v)] (3.33)

The difference from the formulation in Chapter 2 is that the pseudo velocities are now depen-

dent on the unsteady source terms from the previous time instant, bu
o and bv

o as computed in

Equations 3.25 through 3.29 replacing Equations 2.62 through 2.65.

3.1.5 Explicit Runge-Kutta Method for Momentum Equations

The spatial discretization of the integral form of the Navier Stokes equations transforms

this system of partial differential equations into a coupled set of ordinary differential equations.

To integrate an equation of the type:

dφi

dt
=

Ri(φi)

Vi

(3.34)

the following explicit, four-stage Runge-Kutta scheme is adopted:

φ(0) = φn (3.35)

φ(1) = φ(0) +
1

4

∆t

Vi

Ri(φ
(0)) (3.36)
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φ(2) = φ(0) +
1

3

∆t

Vi

Ri(φ
(1)) (3.37)

φ(3) = φ(0) +
1

2

∆t

Vi

Ri(φ
(2)) (3.38)

φ(4) = φ(0) +
∆t

Vi

Ri(φ
(3)) (3.39)

φn+1 = φ(4) (3.40)

By carrying out only spatial integrations on the momentum equations, they can be transformed

to the form:

du

dt
=

Ri
u

ρ∆A
(3.41)

dv

dt
=

Ri
v

ρ∆A
(3.42)

The conservation form of the momentum equation is:

d(ρu)

dt
∆A +

∮

~J · n̂dl =

∫ ∫
[

Su −
∂p

∂x

]

dA (3.43)

Following the spatial discretization in Chapter 2 for the second term on the LHS and the term

on the RHS, the equation can now be expressed as follows:

d(ρu)

dt
∆A = −

∑

aiui +
[

(Su
C − Su

P uP ) + (L̄1p1 + L̄2p2 + L̄3p3)
]

∆A (3.44)

On rearranging the terms and rewrite the flux term as a function of the velocity component

at point P and its neighbors (Equation 2.53), the following equations are obtained:

d(ρu)

dt
∆A = Σanbunb − aP uP − Su

P ∆AuP + Su
C ∆A

+(L̄1p1 + L̄2p2 + L̄3p3)∆A (3.45)

d(ρu)

dt
∆A = Σanbunb − (aP + Su

P ∆A)uP + Su
C ∆A

+(L̄1p1 + L̄2p2 + L̄3p3)∆A (3.46)
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Letting

au
P = aP + Su

P ∆A (3.47)

bu = Su
C ∆A + (L1p1 + L2p2 + L3p3)∆A (3.48)

and assuming incompressible flow (density, ρ, is constant), the above equation is written as:

du

dt
=

(Σanbunb − au
P uP + bu)

ρ∆A
(3.49)

If we define the residual function as:

Ri
u = Σanbunb − au

P uP + bu (3.50)

then the above equation reduces to

du

dt
=

Ri
u

ρ∆A
(3.51)

Similarly the v− momentum equation can be cast to the form required as shown below:

dv

dt
=

(Σanbvnb − av
P vP + bv)

ρ∆A
(3.52)

av
P = aP + Sv

P ∆A (3.53)

bv = Sv
C ∆A + (M1p1 + M2p2 + M3p3)∆A (3.54)

Ri
v = Σanbvnb − av

P vP + bv (3.55)

dv

dt
=

Ri
v

ρ∆A
(3.56)



www.manaraa.com

42

3.2 Solution Procedure

3.2.1 SIMPLER Algorithm

The SIMPLER algorithm is generally used in conjunction with a Fully-Implicit or Crank-

Nicolson time integration as described in Section 3.1. The stepwise procedure for applying

SIMPLER algorithm for the aforementioned discretized equations is as indicated below:

1. First, guess the initial values of u, v, and pressure, p, at all grid points within the domain.

2. Using the definitions of ũ and ṽ, set up the coefficients of the momentum equations.

3. Calculate the unsteady terms and modify the momentum coefficients accordingly to in-

clude these terms (Equations 3.15 through 3.18).

4. With the existing nodal velocities and the momentum coefficients generated in Step 2,

calculate û, v̂, du, and dv using Equations 3.25 to 3.29.

5. Calculate the coefficients and the source term for the pressure equation using Equa-

tions 3.32 and 3.33, and solve for the pressure field, p∗.

6. With the pressure field p∗ and the momentum coefficients calculated in Step 2, solve the

discretized momentum equations to get the nodal velocities (u∗ and v∗). Additionally,

update the fluxes, F u and F v, at the boundary points.

7. Using u∗ and v∗, recalculate the pseudo velocities û∗ and v̂∗ to obtain the source term

for the pressure correction equation.

8. The pressure correction equation is solved to obtain p′, which in turn used to calculate

ũ′, ṽ′, u′, and v′.

9. Correct the velocity components (u and v) using p′ to be used for the next iteration.

10. Return to Step 3 and repeat until convergence.

11. Advance to the next time level.
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Note that the pressure field is never corrected. Because the equations are non-linear, an

iterative procedure is used. The pressure equation is not exact as in structured SIMPLER

and hence, the pressure and momentum equations may need to be underrelaxed. However, the

pressure correction equation should not be relaxed. The purpose of the correction procedure

is to correct the velocity field such that it will conserve mass; consequently, a fairly converged

solution of the correction equation is needed in order to ensure that the ~̃u field sufficiently

satisfies continuity during each iteration.

3.2.2 Runge-Kutta SIMPLER Algorithm

To facilitate the implementation of the Runge-Kutta scheme in the SIMPLER algorithm,

a few modifications have to be made to the procedure. The modified algorithm is as follows:

1. Initially, guess the values of u, v, and pressure, p, at all grid points within the domain.

2. Using the definitions of ũ and ṽ, set up the coefficients of the momentum equations.

3. Calculate the unsteady terms and modify the momentum coefficients accordingly to in-

clude these terms (Equations 3.15 through 3.18).

4. With the modified nodal velocities and the momentum coefficients in Step 3, calculate

û, v̂, du, and dv using Equations 3.25 to 3.29.

5. Calculate the coefficients and the source term for the pressure equation using Equa-

tions 3.32 and 3.33, and solve for the pressure field, p∗.

6. With the pressure field as the source, update the velocity components (u and v) using

four-stage Runge-Kutta algorithm. In this step, the original velocity coefficients and

source terms without the unsteady terms (Step 2) are used.

7. Advance to the next time level.

Note that in the Runge-Kutta algorithm, no pressure-correction equation is used to correct

the velocities. The flowchart for the two algorithms are shown in Figures 3.1 and 3.2.
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Calculate source terms

pressure equation
and coefficients of

Solve pressure equation

Solve momentum equations

Calculate source terms of
pressure correction equation

Solve pressure correction
equation and correct

velocity field

Converged?

flow field

Start a new time
level with a given initial

equations

Calculate coefficients and
source terms of momentum 

Calculate artificial
velocity

terms and coefficient
Calculate unsteady source

no

yes

Figure 3.1 SIMPLER algorithm using Fully-Implicit or Crank-Nicolson

time integration method.



www.manaraa.com

45

flow field

Start a new time
level with a given initial

Calculate source terms
and coefficients of
pressure equation

(with unsteady terms)

Solve pressure equation

Update velocities using

four−stage Runge−Kutta
equations

terms)

Calculate coefficients and
source terms of momentum 
equations (without unsteady

Calculate unsteady source
term and coefficients

velocity
Calculate artificial

Figure 3.2 SIMPLER algorithm using 4-stage Runge-Kutta time integra-

tion method.
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CHAPTER 4. RESULTS AND DISCUSSION

4.1 Lid Driven Cavity

The standard test case of a flow field within a two dimensional, lid driven square cavity is

used to validate the solver. The configuration of the cavity is shown in Figure 4.1. The lid

which moves at a constant speed, drives the flow inside the cavity due to the transport of shear

stress by the molecular viscosity. This problem has a well defined geometry and boundary

condition. In addition, the balance of convection and diffusion associated with recirculating

regions present in the flow makes this problem an excellent case for testing numerical schemes.

moving lid
lidU

L

L

Figure 4.1 Schematic of lid driven Cartesian cavity.

To simulate the motion of the lid, the velocity at the top boundary of the cavity is set at

1 ft/s. The cavity is a square with unit dimensions in width and height. The four boundaries

are viscous walls where a no-slip condition is applied. The flow is characterized by the Reynolds
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number, which is defined by:

Re =
ρ Ulid L

µ
(4.1)

where ρ is the density of the fluid, Ulid is the speed of the moving lid, L is the length and

height of the cavity, and µ is the viscosity of the fluid. For the given geometry, three values of

Reynolds number, 100, 400 and 1000, were simulated and compared with benchmark results

from Ghia [64].

Two computational grids were used in the numerical simulations, as shown in Figures 4.2

and 4.3. The unstructured grids are generated from Cartesian structured grids, where each

quadrilateral cell is subdivided into two triangles. The grids have a non-uniform distribution

with higher grid density near the wall boundaries. The coarser of the two structured meshes

has 52×52 grid points in the height and width direction, while the finer one has 129×129

grid points. The time step size was taken to be 0.01s for the cases using Fully-Implicit and

Crank-Nicolson scheme, while it was reduced to 0.001s for the Runge-Kutta scheme.

Figure 4.2 The computational unstructured grid triangulated from 52×52

grid.
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Figure 4.3 The computational unstructured grid triangulated from

129×129 grid.

4.1.1 Calculations for Re=100

For the Reynolds number of 100, the coarser grid (52×52, Figure 4.2) was used. The mass

convergence history is given in Figure 4.4. It is shown that for all the unsteady algorithms,

the mass residual has converged to a reasonable level. The Fully-Implicit scheme shows the

best convergence level compared to the others, while the Runge-Kutta scheme gives the lowest

level of convergence. For all the schemes, oscillations of the mass residual are seen at a short

initial period of the flow development. Figure 4.5 shows the u-velocity profile on the vertical

centerline of the unit cavity, while the v-velocity profile on the horizontal centerline is plotted

in Figure 4.6. The results obtained from unsteady simulations using Fully-Implicit, Crank-
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Nicolson and Runge-Kutta show an excellent agreement with the reference [64]. This shows

that for the current Reynolds number, the grid resolution is sufficient to predict the flow field.

The transient history of the u-velocity component at the center of the cavity is plotted in

Figure 4.7. The results match well with previous computation by Pletcher [65].

The streamlines from the current analysis can be seen in Figures 4.8 through 4.10, respec-

tively. The streamline profiles for all the schemes match well. The main vortex is slightly off

center, closer to the upper right corner. Two secondary vortices are observed at the left and

right lower corners of the cavity. The size of the right vortex is slightly larger than that of the

left one.

Figure 4.4 Mass residual history for Re=100 (52×52 grid).
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Figure 4.5 Vertical centerline u-velocity for Re=100 (52×52 grid).

Figure 4.6 Horizontal centerline v-velocity for Re=100, 52×52 grid.
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Figure 4.7 Time history of u-velocity at the center for Re=100.

Figure 4.8 Streamlines for Re=100, 52x52 grid, Fully-Implicit.
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Figure 4.9 Streamlines for Re=100, 52x52 grid, Crank-Nicolson.

Figure 4.10 Streamlines for Re=100, 52x52 grid, Runge-Kutta.
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4.1.2 Calculations for Re=400

Both meshes in Figures 4.2 and 4.3 were used to simulate Re = 400. Figure 4.11 gives

the mass convergence history for this Reynolds number using the coarser grid. It is observed

that Runge-Kutta has slightly lower convergence rate compared to the other two algorithms.

Similar to the previous case, oscillations of the mass residual at the initial period of the flow

development is again observed here. The u-velocity and v-velocity profile on the vertical and

horizontal centerline of the cavity for a Reynolds number of 400 obtained using this grid are

shown in Figures 4.12 and 4.13. Qualitatively the current results show similar profile with the

results from experiment, but the discrepancies are quite significant. One can infer that for this

Reynolds number, the grid resolution is not sufficient to simulate the flow accurately. It is also

observed that Fully-Implicit, Crank-Nicolson and Runge-Kutta generate similar results. The

transient history of the u-velocity component at the center of the cavity is shown in Figure 4.14.

The Fully-Implicit scheme and Crank-Nicolson scheme show an excellent agreement. However,

a small discrepancy is observed for the Runge-Kutta scheme. This might be due to the different

time step size used in the Runge-Kutta scheme and the other two schemes. Comparison

with the previous computation by Pletcher gives a reasonable agreement qualitatively and

quantitatively.

Figure 4.15 gives the mass convergence history for this Reynolds number using the fine

129 × 129 grid. From the figure, the mass residual has larger oscillations at the beginning

of the simulation compared to the result from the coarser grid. In Figures 4.16 and 4.17,

the u-velocity and v-velocity profile on the horizontal and vertical centerline are plotted for

the simulations using the refined mesh. As expected, the more refined mesh gives a more

accurate profile than the coarser mesh. Figure 4.18 gives the transient history of the u-velocity

component at the center of the cavity. Compared to the results from the coarser grid, the

magnitude of the u-velocity component at the center reaches a higher maximum value before

it decreases and reaches a converged value. This is consistent with the change in the transient

behavior of the flow at the center of the cavity with grid refinement as observed by Wirogo [66].

The streamlines for the reference case is shown in Figure 4.19. Figures 4.20 through 4.22
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show the streamlines for the flow field computed by the current analysis using the 52×52 grid,

while Figures 4.23 through 4.25 depict the streamlines computed using the 129×129 grid. A

good comparison was observed for all the schemes. The main circular flow is still centered

about a point which is slightly above and to the right of the center of the cavity. However, on

comparison with the Re=100 case, the center of the main vortex has moved slightly downward

and towards the left. Similar to the previous case, the circular flow from the primary vortex

creates two secondary vortices in both the lower right and lower left corners. The rotation of

the flow around the secondary vortices is in the counter-clockwise direction. The size of these

vortices are larger than observed in Re=100. The growth in the size of the vortices is evident

for the vortex at the lower right corner of the cavity which is bigger than the vortex on the

left.

Figure 4.11 Mass residual history for Re=400 (52×52 grid).
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Figure 4.12 Vertical centerline u-velocity for Re=400 (52×52 grid).

Figure 4.13 Horizontal centerline v-velocity for Re=400 (52×52 grid).
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Figure 4.14 Time history of u-velocity at the center for Re=400 (52×52

grid).

Figure 4.15 Mass residual history for Re=400 (129×129 grid).
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Figure 4.16 Vertical centerline u-velocity for Re=400 (129×129 grid).

Figure 4.17 Horizontal centerline v-velocity for Re=400 (129×129 grid).
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Figure 4.18 Time history of u-velocity at the center for Re=400 (129×129

grid).

Figure 4.19 Streamlines for Re=400, Flux Corrected Method (FCM).
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Figure 4.20 Streamlines for Re=400, 52×52 grid, Fully-Implicit.

Figure 4.21 Streamlines for Re=400, 52×52 grid, Crank-Nicolson.
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Figure 4.22 Streamlines for Re=400, 52×52 grid, Runge-Kutta.

Figure 4.23 Streamlines for Re=400, 129×129 grid, Fully-Implicit.
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Figure 4.24 Streamlines for Re=400, 129×129 grid, Crank-Nicolson.

Figure 4.25 Streamlines for Re=400, 129×129 grid, Runge-Kutta.
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4.1.3 Calculations for Re=1000

Considering the accuracy of the results obtained for Re=400, the simulations of the cavity

flow with a Reynolds number of 1000 was carried out using the fine grid (129×129). The mass

convergence history is shown in Figure 4.26. This plot shows a decrease in the convergence

rate compared to the case of Re=400. In addition, larger oscillations at the initial period when

the vortex is developing are observed. The u and v velocity profiles on the cavity centerlines

are presented in Figures 4.27 and 4.28 For this case, the predicted u and v velocities on the

vertical and horizontal centerlines are less accurate; however, the results are still reasonably

close to the reference values. The plot of the u-velocity component at the center of cavity

versus time is given in Figure 4.29. The results from the current algorithms are compared with

the reference [66]. A good agreement is observed for all the schemes, which concludes that the

algorithms developed in the current research is capable to follow the high transient gradient

between t = 5s and t = 8s.

Figures 4.31 through 4.33 shows the streamline profile for this Reynolds number using

Fully-Implicit, Crank-Nicolson, and Runge-Kutta, respectively. The streamlines in the cavity

for the case of Re=1000 exhibit the same structure as that of the Re=400 case. Some small

changes are apparent in the location and size of the vortices. The vortex in the lower left has

increased in size and the center of rotation has moved up and towards the right. The vortex in

the lower right has stayed approximately the same size. The center has moved slightly lower

than what was observed in the previous case.
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Figure 4.26 Mass residual history for Re=1000 (129×129 grid).

Figure 4.27 Vertical centerline u-velocity for Re=1000 (129×129 grid).



www.manaraa.com

64

Figure 4.28 Horizontal centerline v-velocity for Re=1000 (129×129 grid).

Figure 4.29 Time history of u-velocity at the center for Re=1000 (129×129

grid).
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Figure 4.30 Streamlines for Re=1000, Flux Corrected Method (FCM).

Figure 4.31 Streamlines for Re=1000, 129×129 grid, Fully-Implicit.
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Figure 4.32 Streamlines for Re=1000, 129×129 grid, Crank-Nicolson.

Figure 4.33 Streamlines for Re=1000, 129×129 grid, Runge-Kutta.
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4.2 Backward-Facing Step Channel Flow

The second validation case is simulation of flow through a channel with a step. This case

has been recognized as a good validation case due to the special characteristic exhibited by

the flow due to the interaction between the reverse flow behind the step and the shear layer

from the step edge. Another reason is that for a given expansion ratio and inlet profile, the

reattachment point of the separated region behind the step is only dependent on Reynolds

number.

Figure 4.34 shows a schematic of the step channel. The length of the channel, L, is 20 ft.

The inlet of the channel has a height of 0.5319 ft while the overall height of the channel, H, is

1.0319 ft. The expansion ratio, η, which is defined as the ratio of the height of the channel to

the inlet height is 1.94, to match with the experimental setup by Armaly [67]. Most previous

computational results used an expansion ratio of 2. However, Wirogo [66] has shown that a

slight difference in the expansion ratio of η=1.94 and η=2 produces negligible differences in

the computed primary reattachment length, x1.

x3

h

H

S I

II

L

x

x2

1

Figure 4.34 Schematic of the step channel.
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The profile of the velocity entering the channel is set to model the profile that would exist

if the flow was traveling through a channel with the diameter of the inlet. It is a parabolic

profile for the horizontal velocity component u:

u = c(y − 0.5)(y − 1.0319) (4.2)

where the constant c is determined to give a chosen average velocity along the inlet. For the

current research, the average velocity of the inflow across the inlet is set to 1 ft/s.

Five cases were tested for Reynolds numbers of 100, 200, 400, 600 and 800. The Reynolds

number for this problem is given by:

Re =
ρ Uavg H

µ
(4.3)

where Uavg is the average inlet velocity, ρ is the fluid density, and µ is the dynamic viscosity

of the fluid. Previous investigations show that Regions I and II (in Figure 4.34) vary in size

and are a function of the Reynolds number.

The computational grid used for this case has 7041 nodes and 20,432 faces. It is clustered

near the inlet and the recirculating Region I of the channel. The grid is shown in Figures 4.35

and 4.36. For cases using Fully-Implicit and Crank-Nicolson scheme, a time step size of 0.01s

was used, while for Runge-Kutta, the time step size was 0.001s.

Figure 4.37 is a plot of the length of Region I scaled by the step height for different Reynolds

numbers. Results are compared with the experimental results from Armaly [67] and other CFD

methods such as the second-order accurate finite difference Fractional Step Method used by

Kim and Moin [12]. At lower, fully laminar Reynolds numbers, the current results match the

experimental data very well. However, at higher Reynolds number, the results deviate slightly

from the experimental data. This may be due to the effects of three-dimensionality in the real

experiment which has been discussed and shown by Armaly in the spanwise velocity plot [67].
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Figure 4.35 Computational grid for the backward step channel.

Figure 4.36 Close up of the grid at channel entrance.



www.manaraa.com

70

Figure 4.37 Comparison of separation length for different Reynolds num-

bers.
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Figure 4.38 shows the plots of the streamlines within the channel for all of the Reynolds

numbers tested using Fully-Implicit scheme. In these plots, Regions I and II can clearly be

identified. Figure 4.38(a) shows a plot of the streamlines for the case when the Reynolds

number of the flow is 100. Region I is small and Region II does not appear to exist. Region

I rotates in a clockwise direction. In Figure 4.38(b), when the Reynolds number has been

increased to 200, the size of Region I has increased significantly over that seen in the Re = 100

case. The center of rotation for Region I has also shifted downstream. Region II does not

exist for this Reynolds number. Figure 4.38(c) shows the streamlines for Re = 400. The size

of Region I seems to demonstrate a linear growth with increasing Reynolds number up to this

point. This can also be verified in Figure 4.37. Although for this flow Region II still does

not exist, some evidence of the emerging region can be seen. The streamlines on the upper

wall directly over the end of Region I appear to grow indicating that a vortex is beginning to

develop.

The Reynolds number is raised to 600 in Figure 4.38(d). Region I has grown slightly

and Region II is now fully developed. The Region II vortex rotates counter-clockwise, the

opposite direction of Region I. Region II is centered slightly downstream of the end of Region

I. Figure 4.38(e) shows the streamlines for the channel flow when the Reynolds number is 800.

The size of Region I has grown larger, as expected from the experimental results. In addition,

Region II has also increased in size. The same sets of plots for the channel flow simulation

using Crank-Nicolson and Runge-Kutta scheme are shown in Figures 4.39 and 4.40. These

plots reveals similar flow characteristics with the increasing Reynolds number.

4.2.1 Unsteady Vortex Development at Re=800

It has long been debated whether the flow for Reynolds number of 800 has a steady state.

Gresho et al. found that for a sufficiently refined grid and simulation time, the numerical

solution indeed reaches a steady state. This behavior is captured by the current results as

shown in the streamline plots of the channel flow at different time instances.

The flow development for the Fully-Implicit scheme can be seen in Figures 4.41 through 4.43.
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At t = 1s, the primary vortex forms just behind the step. After the initial development of the

primary vortex, it moves downstream and a small eddy forms just behind it. As this primary

vortex travels further downstream, its strength decreases and it progressively becomes smaller

in size and eventually disappears. It is also observed that small eddies periodically form at the

upper wall. The formation of the eddies occurs until about t = 40s after which the flow starts

to stabilize. From this point on, only two main vortices are present in the flow. This primary

and secondary vortex grow in size until t = 200s when the flow attains steady state.

A similar set of plots for the results using the Crank-Nicolson scheme is shown in Fig-

ure 4.44 and 4.45. At t = 1s, the formation of the primary vortex takes place behind the

step. This vortex is convected downstream and a small eddy forms behind it. In addition to

these vortices,a secondary eddy starts to form at the upper wall. As the core flow hits the

bottom wall and gets deflected, a vortex develops at the bottom wall just downstream of the

upper-wall eddy. In these plots, the shedding of the primary and secondary vortices continue

until t = 40s. Subsequent plots indicate that the primary vortex grows in size whereas the

secondary vortex decreases. This phenomenon continues till steady state is reached.

The results obtained for the Runge-Kutta time scheme are shown in Figures 4.47 and 4.48.

Though the general nature of the flow development is consistent for the three schemes wherein

they converge to an approximately steady state solution, the pattern of their transient devel-

opment is slightly different. For this case, the Runge-Kutta and Crank-Nicolson are able to

capture the transient behavior better than the Fully-Implicit scheme. This can be attributed

to the fact that the first-order Fully-Implicit scheme is only first order accurate in time and is

more dissipative.



www.manaraa.com

73

(a) Re=100

(b) Re=200

(c) Re=400

(d) Re=600

(e) Re=800

Figure 4.38 Streamline contour plot for Re=100, 200, 400, 600, and 800

using Fully-Implicit time integration.
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(a) Re=100

(b) Re=200

(c) Re=400

(d) Re=600

(e) Re=800

Figure 4.39 Streamline contour plot for Re=100, 200, 400, 600, and 800

using Crank-Nicolson time integration.
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(a) Re=100

(b) Re=200

(c) Re=400

(d) Re=600

(e) Re=800

Figure 4.40 Streamline contour plot for Re=100, 200, 400, 600, and 800

using Runge-Kutta time integration.
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Figure 4.41 Unsteady development for Re=800 using Fully-Implicit time

integration (part 1).
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Figure 4.42 Unsteady development for Re=800 using Fully-Implicit time

integration (part 2).
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Figure 4.43 Unsteady development for Re=800 using Fully-Implicit time

integration (part 3).
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Figure 4.44 Unsteady development for Re=800 using Crank-Nicolson time

integration (part 1).
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Figure 4.45 Unsteady development for Re=800 using Crank-Nicolson time

integration (part 2).
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Figure 4.46 Unsteady development for Re=800 using Crank-Nicolson time

integration (part 3).
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Figure 4.47 Unsteady development for Re=800 using Runge-Kutta time

integration (part 1).
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Figure 4.48 Unsteady development for Re=800 using Runge-Kutta time

integration (part 2).
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Figure 4.49 Unsteady development for Re=800 using Runge-Kutta time

integration (part 3).
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4.3 Flow Over a Vertical Flat Plate

The new algorithm is applied to simulate the unsteady flow over a flat plate at a 90 degree

angle to the flow as shown in Figure 4.50. At the inlet boundary, a uniform flow U∞ with a

magnitude of 59.33 ft/s is assumed. The velocity at the outlet boundary is adjusted to satisfy

the overall mass conservation. The Reynolds number of the flow is 17,800, where the Reynolds

number for this flow is defined to be Re = (U∞H)/ν. The height H of the plate is taken to

be 0.03 ft and the thickness of the plate is 0.002 ft, which give an aspect ratio of 15. The

The schematic of the flat plate configuration is presented in Figure 4.50. Another important

parameter to be defined is the Strouhal number:

Sr =
Hf

U∞

where f is the frequency of the shedding.

The computational grid used in the simulation has 16,504 nodes, 32,702 triangles and 49,206

faces, as shown in Figure 4.51. The grid near the plate is shown in Figure 4.52. The simulation

is performed for 0.1 s of real time. The time step size was set to 10−5 s for the simulations

using the Fully-Implicit and the Crank-Nicolson schemes, while for the Runge-Kutta scheme

a time step size of 10−6 s was used.

0.03 ft

0.002 ft

−4 2ν
U  = 59.33 ft/s

     = 1x10   ft /s

8

Figure 4.50 Schematic of flat plate at 90◦ to the flow.

The drag and lift coefficient history for the simulation using the Fully-Implicit scheme was



www.manaraa.com

86

plotted and is presented in Figure 4.53. For the given time step, the number of sub-iterations

within each time step is varied until the change in the solution is negligible. Comparing the

solution from the simulations using 10 sub-iterations and 30 sub-iterations in Figure 4.53(c),

a discrepancy in the amplitude and an offset in the time axis are evident. When the number

of sub-iterations is increased to 50, the solution matches reasonably well with that of 30 sub-

iterations. This concludes that 30 sub-iterations would give a reasonable accuracy for the

given problem. Similar plots for the simulation using Crank-Nicolson scheme are depicted in

Figures 4.54 and 4.54(c). Similar behavior to the result from using Fully-Implicit scheme is

observed here; thus; the same conclusion can be drawn. For the subsequent discussion, the

results presented for both Fully-Implicit and Crank-Nicolson scheme are from the simulation

using 50 sub-iterations.

A comparison of the drag and lift coefficient history using the Fully-Implicit, Crank-

Nicolson and Runge-Kutta scheme is plotted in Figure 4.55. For all the schemes, the flow

becomes periodic after about 0.02 second. The lift coefficient oscillates with a zero mean

value. It is interesting to note that the drag oscillates at twice the frequency of the lift or the

vortex shedding frequency. For the drag coefficient, one shedding cycle consists of two consec-

utive troughs and crests. In Figure 4.56, one cycle spans from point A to point E. The mean

drag coefficient and the Strouhal number for the results of the flat plate is given in Table 4.1.

There is a variation of about 4 percent observed for the mean drag coefficient, and about 8

percent for the Strouhal number. The variation in the drag amplitude and frequency might

indicate that the time-step sizes taken for the current simulations are not small enough for the

schemes to produce the same transient behavior.

Scheme Mean Drag Coefficient (CD) Strouhal number (Sr)

Fully-Implicit 2.49 0.11926

Crank-Nicolson 2.52 0.11870

Runge-Kutta 2.55 0.12654

Table 4.1 Mean drag coefficient and Strouhal number comparison for the

different schemes.
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Figure 4.51 Computational grid for the flow over a vertical flat plate case.

Figure 4.52 Grid around the flat plate.
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(a)

(b)

(c)

(d)

Figure 4.53 Drag and lift coefficient history using Fully-Implicit scheme.
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(a)

(b)

(c)

(d)

Figure 4.54 Drag and lift coefficient history using Crank-Nicolson scheme.
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(a)

(b)

(c)

(d)

Figure 4.55 Comparison of the drag and lift coefficient history.
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Figure 4.56 One pressure cycle.

The velocity and pressure field at points A through point E is shown in Figures 4.57

and 4.58. From Figure 4.57, it can be seen that at point A and B, the vortex shedding occurs

at the bottom of the plate, while at point C and D the vortex shedding occurs at the top.

In Figure 4.58 corresponding to point A, a low pressure region is observed just behind the

plate, corresponding to a peak in the drag coefficient. At point B, the low pressure region

has detached from the plate and move downstream, resulting in a drop in the drag values. At

point C and D, the same phenomenon is observed with the vortex shedding from the top of the

plate. This pressure cycle is repetitive as observed in the figures where point E represents the

same state as point A. The same sets of plots for Crank-Nicolson and Runge-Kutta schemes

are shown in Figures 4.59 through 4.62. From these figures, it is seen that all the schemes

show similar behavior.
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(a) t = 0.0926s (point A) (b) t = 0.0937s (point B)

(c) t = 0.0948s (point C) (d) t = 0.0957s (point D)

(e) t = 0.0968s (point E)

Figure 4.57 The velocity field for one pressure cycle (Fully-Implicit).
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(a) t = 0.0926s (point A) (b) t = 0.0937s (point B)

(c) t = 0.0948s (point C) (d) t = 0.0957s (point D)

(e) t = 0.0968s (point E)

Figure 4.58 The pressure field for one pressure cycle (Fully-Implicit).
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(a) t = 0.0929s (point A) (b) t = 0.0942s (point B)

(c) t = 0.0953s (point C) (d) t = 0.0961s (point D)

(e) t = 0.0927s (point E)

Figure 4.59 The velocity field for one pressure cycle (Crank-Nicolson).
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(a) t = 0.0929s (point A) (b) t = 0.0942s (point B)

(c) t = 0.0953s (point C) (d) t = 0.0961s (point D)

(e) t = 0.0927s (point E)

Figure 4.60 The pressure field for one pressure cycle (Crank-Nicolson).
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(a) t = 0.0927s (point A) (b) t = 0.0936s (point B)

(c) t = 0.0947s (point C) (d) t = 0.0957s (point D)

(e) t = 0.0967s (point E)

Figure 4.61 The velocity field for one pressure cycle (Runge-Kutta).
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(a) t = 0.0927s (point A) (b) t = 0.0936s (point B)

(c) t = 0.0947s (point C) (d) t = 0.0957s (point D)

(e) t = 0.0967s (point E)

Figure 4.62 The pressure field for one pressure cycle (Runge-Kutta).
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CHAPTER 5. CONCLUDING REMARKS AND

RECOMMENDATIONS

In the current research, the unsteady algorithms for incompressible Navier-Stokes flow on

triangular unstructured grids have been developed and implemented. The time integration

method uses a Fully-Implicit, Crank-Nicolson and an explicit four-step Runge-Kutta method.

A vertex-centered discretization with median-dual control volume as proposed by Baliga is

used. Also, the equal order velocity pressure interpolation method is chosen to avoid the

checkerboard pressure oscillation commonly encountered in using a collocated grid for solving

incompressible flows. The numerical algorithm used to solve the resulting equations is derived

from the SIMPLER algorithm. The Fully-Implicit and Crank-Nicolson follow the traditional

path of a pressure correction equation to update the velocities. The Runge-Kutta SIMPLER

uses the four-stage Runge-Kutta to update the velocities directly without a pressure correction

equation.

The resulting solver has been validated using the standard lid driven cavity problem and the

backward facing step channel. A good agreement with existing experimental data is obtained

for all cases. The algorithms are also capable of capturing the unsteady or transient behavior

in vortex development such as observed in the step channel flow. The unsteady algorithms

have been applied to simulate the unsteady flow over a vertical flat plate. It was found that

Runge-Kutta scheme implemented in the current research displays general behaviors of an

explicit scheme, such as sensitivity to the grid density and limitation on the allowable time

step size. The Runge-Kutta scheme is also observed to perform well on low Reynolds number

cases, but it becomes more unstable at higher Reynolds number, with the necessity of a finer

grid density and lower time step. This is expected as the ODEs become stiff.
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Although the results are promising, further efforts are necessary to make the algorithm

robust and more general. A time comparison study of the implicit Crank-Nicolson and explicit

Runge-Kutta scheme to obtain the difference and saving in execution time needs to be un-

dertaken. Extension of the time-accurate algorithm to general arbitrary control volumes and

three-dimensional flows would further enhance its usefulness.
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APPENDIX A. Derivation of Coefficients of Momentum and Pressure

Equations

Coefficients Of The Shape Function for General Variable φ

The shape function of a general variable φ as discussed in Chapter 2 is as follows:

φ = AZ + BY + C (A.1)

where Z is an exponential function in the local coordinate X and defined as:

Z =
X − Xmax

Pe + [[0, (1 − 0.1 |Pe|)5]]
(A.2)

Using the values of the variable at the element vertices (Figure 2.4) as the boundary condition

for solving the shape function coefficients, we have:

AZ1 + BY1 + C = φ1 (A.3)

AZ2 + BY2 + C = φ2 (A.4)

AZ3 + BY3 + C = φ3 (A.5)

The above equations can be written in the matrix form, and solved using Cramer’s rule for the

coefficients A, B, and C to get:















Z1 Y1 1

Z2 Y2 1

Z3 Y3 1





























A

B

C















=















φ1

φ2

φ3















(A.6)
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L1 = (Y2−Y3)
∆ , L2 = (Y3−Y1)

∆ , L3 = (Y1−Y2)
∆ ,

M1 = (Z3−Z2)
∆ , M2 = (Z1−Z3)

∆ , M3 = (Z2−Z1)
∆ ,

N1 = (Z2Y3−Z3Y2)
∆ , N2 = (Z3Y1−Z1Y3)

∆ , N3 = (Z1Y2−Z2Y1)
∆

(A.7)

where the determinant ∆ is:

∆ = Z1 (Y2 − Y3) + Z2 (Y3 − Y1) + Z3 (Y1 − Y2) (A.8)

The coefficients can then be written as an interpolation function of the values of φ at the

vertices:

A = L1φ1 + L2φ2 + L3φ3 (A.9)

B = M1φ1 + M2φ2 + M3φ3 (A.10)

C = N1φ1 + N2φ2 + N3φ3 (A.11)

Discretization Of The Flux Terms

The flux of the general variable φ expressed in terms of the total flux vector ~J is:

~J =

(

ρUφ − µ
∂φ

∂X

)

î +

(

ρV φ − µ
∂φ

∂Y

)

ĵ (A.12)

Given the definition of φ derived through the shape function, the X and Y components of the

flux vector are:

JX = (ρfi − µLi)φi (A.13)

JY = (ρgi − µMi)φi (A.14)

where summation is implied over the neighboring grid points.
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Expanding Equations A.13 and A.14, we obtain:

JX = {ρ [(U − Uavg)L1Z + U (M1Y + N1)] − µL1}φ1

+ {ρ [(U − Uavg)L2Z + U (M2Y + N2)] − µL2}φ2 (A.15)

+ {ρ [(U − Uavg)L3Z + U (M3Y + N3)] − µL3}φ3

JY = {ρV (L1Z + M1Y + N1) − µM1}φ1

+ {ρV (L2Z + M2Y + N2) − µM2}φ2 (A.16)

+ {ρV (L3Z + M3Y + N3) − µM3}φ3

The flux terms can then be expressed in terms vertices 1, 2, and 3 as:

JX = f1φ1 + f2φ2 + f3φ3 (A.17)

JY = g1φ1 + g2φ2 + g3φ3 (A.18)

In Chapter 2, the LHS of the momentum equations is:

LHS =

∮

~J · n̂dl (A.19)

This term can be integrated to obtain the flux across the control volume face r − s − t in

Figure 2.4. Using Simpson’s quadrature rule, the integration yields:

LHS =
dl

6

([

~J · n̂
]

r
+ 4

[

~J · n̂
]

s
+
[

~J · n̂
]

t

)

(A.20)
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2

3

1

rs
t

n

dl

Figure A.1 Flux integration

Expanding Equation A.20:

LHS =
dl

6
[(JX êX + JY êY )r · (nX êX + nY êY )

+4 (JX êX + JY êY )s · (nX êX + nY êY )

+ (JX êX + JY êY )t · (nX êX + nY êY )] (A.21)

where:

nX =

(

Yt − Yr

dl

)

(A.22)

nY = −

(

Xt − Xr

dl

)

(A.23)

The terms are then collected and expressed in X and Y components as:

LHS =
1

6
[(JXr + 4JXs + JXt) (Yt − Yr)

− (JY r + 4JY s + JY t) (Xt − Xr)] (A.24)
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Using Equations A.17 and A.18, the flux can be represented in terms of the variable at the

vertices of the triangle. The X and Y components of the total flux vector ~J become functions

of the grid points and can be written as:

JX = f
()
1 φ1 + f

()
2 φ2 + f

()
3 φ3 (A.25)

JY = g
()
1 φ1 + g

()
2 φ2 + g

()
3 φ3 (A.26)

where the brackets () signify that the functions f and g are computed at either r, s, or t on the

control volume edge. Substituting Equations A.25 and A.26 into Equation A.24, the expression

becomes:

LHS =
1

6
([f r

1φ1 + f r
2φ2 + f r

3φ3] (Yt − Yr)

+4 [f s
1φ1 + f s

2φ2 + f s
3φ3] (Yt − Yr) +

[

f t
1φ1 + f t

2φ2 + f t
3φ3

]

(Yt − Yr)

− [gr
1φ1 + gr

2φ2 + gr
3φ3] (Xt − Xr) − [gs

1φ1 + gs
2φ2 + gs

3φ3] (Xt − Xr)

−
[

gt
1φ1 + gt

2φ2 + gt
3φ3

]

(Xt − Xr)
)

(A.27)

The equation can now be regrouped according to information at the grid points as:

LHS = a1φ1 + a2φ2 + a3φ3 (A.28)

where:

a1 =
1

6

((

f r
1 + 4f s

1 + f t
1

)

(Yt − Yr) −
(

gr
1 + 4gs

1 + gt
1

)

(Xt − Xr)
)

(A.29)

a2 =
1

6

((

f r
2 + 4f s

2 + f t
2

)

(Yt − Yr) −
(

gr
2 + 4gs

2 + gt
2

)

(Xt − Xr)
)

(A.30)

a3 =
1

6

((

f r
3 + 4f s

3 + f t
3

)

(Yt − Yr) −
(

gr
3 + 4gs

3 + gt
3

)

(Xt − Xr)
)

(A.31)
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Coefficients Of The Pressure Equation

Pressure is assumed to vary linearly within any particular element or triangle. The proce-

dure for the development of the coefficients is identical to the one for the shape function except

that a linear profile is assumed in the form of:

p = − (αx + βy + γ) (A.32)

for node P . Setting up a system of equations in terms of pressure at the grid points, the

following is obtained:















x1 y1 1

x2 y2 1

x3 y3 1





























α

β

γ















=















p1

p2

p3















(A.33)

Using Cramer’s rule again, the coefficients can be written as:

α = L̄1p1 + L̄2p2 + L̄3p3 (A.34)

β = M̄1p1 + M̄2p2 + M̄3p3 (A.35)

γ = N̄1p1 + N̄2p2 + N̄3p3 (A.36)

such that:

L̄1 = (y3−y2)
∆̄

, L̄2 = (y1−y3)
∆̄

, L̄3 = (y2−y1)
∆̄

,

M̄1 = (x2−x3)
∆̄

, M̄2 = (x3−x1)
∆̄

, M̄3 = (x1−x2)
∆̄

,

N̄1 = (x3y2−x2y3)
∆̄

, N̄2 = (x1y3−x3y1)
∆̄

, N̄3 = (x2y1−x1y2)
∆̄

(A.37)

and:

∆̄ = x1 (y2 − y3) + x2 (y3 − y1) + x3 (y1 − y2) (A.38)
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APPENDIX B. Divergence in the Local Coordinate System

Figure B.1 shows a diagram of the global and local coordinate systems, where θ is the angle

between the Cartesian x-axis and the local X-axis. The coordinate transformation from the

Cartesian system (x, y) to the local coordinate system (X,Y ) is given by:

X = x cos θ + y sin θ

Y = −x sin θ + y cos θ

Uavg

2

3

1

y

x

X

Y

θ

Figure B.1 Global and local coordinate system for a triangular element.
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The unit vector of the local coordinate system can be written as:

êX = cos θ î + sin θ ĵ

êY = −sin θ î + cos θ ĵ

The divergence in the local coordinate system (X,Y ) is given by:

∇ = î
∂

∂x
+ ĵ

∂

∂y
(B.1)

= î

(

∂

∂X

∂X

∂x
+

∂

∂Y

∂Y

∂x

)

+ ĵ

(

∂

∂X

∂X

∂y
+

∂

∂Y

∂Y

∂y

)

(B.2)

= î

(

∂

∂X
cos θ −

∂

∂Y
sin θ

)

+ ĵ

(

∂

∂X
sin θ +

∂

∂Y
cos θ

)

(B.3)

=
∂

∂X

(

cos θ î + sin θ ĵ
)

+
∂

∂Y

(

−sin θ î + cos θ ĵ
)

(B.4)

= êX

∂

∂X
+ êY

∂

∂Y
(B.5)
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